SAFARI

Scalable architecture for ad hoc routing & internetworking

Ahamed Amit Ansley Santa Shu
Druschel Johnson Hu
Rolf Riedi

CS Dept., Rice University, Dec. 2003
Ad hoc networking

Connectivity (failing)
Mobility (ubiquitous)
Organization (overwhelming)
Challenges in Large ad hoc networks

- Large routing tables vs extensive searches
- Long routes break more often
- Promising approaches
 - Hierarchical structures
 - Landmarks and anchors
SAFARI Goals

Scale to ten-thousands of nodes
Self-organizing, adaptive

Higher lever services
Applications
Integrate available Network Infrastructure
SAFARI Architecture

...in a nutshell
Buoys emit beacons

- Nodes *self-elect* to become a *buoy*
Buoys emit beacons

- Nodes *self-elect* to become a *buoy*
Buoys emit beacons

- Nodes **self-elect** to become a **buoy**
Buoys emit beacons

- Nodes **self-elect** to become a buoy
- Buoys emit beacons
Cell formation

- Nodes *cluster* around closest buoy
 - Distance: Hop counts of beacon
Cell formation

- Nodes cluster around closest buoy
 - ...forming cells
Hierarchy

- Buoys *self-elect* to become *level-2 buoys*
Hierarchy

- Buoys self-elect to become level-2 buoys
- **1-buoys** cluster around closest 2-buoy
Hierarchy

- Buoys self-elect to become level-2 buoys
- 1-buoys cluster around closest 2-buoy
- Inherit and iterate
Coordinates

- **Hierarchy** of cells: coordinates
Coordinates

- Hierarchy of cells: coordinates
Coordinates

- Hierarchy of cells: coordinates
- Inserted in p2p fashion
Hybrid routing

• Look up coordinate of receiver
Hybrid routing

• Look up coordinate of receiver
• Route towards **buoys** of receiver
 – Back-trace the beacon
 – Local route repair

(receiver sender)
Hybrid routing

- Look up coordinate of receiver
- Route towards **buoys** of receiver
 - Route towards receiver’s buoy of highest level different from own
Hybrid routing

- Look up coordinate of receiver
- Route towards **buoys** of receiver
 - Route towards receiver’s buoy of highest level different from own
Hybrid routing

- Look up coordinate of receiver
- Route towards **buoys** of receiver
- In the receiver’s cell: On demand (**DSR**)
Safari Scalability

- **Hierarchical Structure**
- **Transparency**
 - structure-routing-overlay
- **Hybrid routing**
 - Local: *on-demand*
 - Less coordinate updates
 - Global: proactive yet *distributed*
 - Small routing tables (*towards* buoys)
 - Small packet header (coordinate, no route)
Ongoing Projects

Transition and Equilibrium
Maintenance and Operation
Simulation and Experiment
Transition and Equilibrium

• Buoy formation 101
 – Node self-elects if no buoy is close
 – Buoy retires if too close to other buoy

• Transitions:
 – Cold start at failure of wireless infra-structure
 – Merging and partitioning of network

• Equilibrium:
 – Buoy changes/hand-over due to failure/mobility

• Overhead:
 – Beacon
 – Coordinate updates
Start-up: Car parking problem

• Cars arrive at random locations
• Park if gap is sufficiently long

• Street will reach \textit{jamming limit}
• \textit{Renyi}: on average 74.75\% of space occupied
Helicopter parking problem

- Placing discs in the plane
- Feder:
 - On average 54.7% of spaced occupied
 - Convergence rate to jamming limit

- Safari:
 - Number of buoys forming \(\sim \frac{1}{\text{designed distance}} \)
 - Rate of convergence to equilibrium
 #buoys still to form \(\sim \frac{1}{\sqrt{t}} \)
Maintenance and Operation

• Buoy fluctuations due to mobility
 – Using a simple collision model for a gas

Time evolution of # of buoys:

\[
\frac{dN(t)}{dt} = -\frac{R_v N(t)^2}{\sqrt{2A}}
\]

\[
\frac{1}{N(t)} = \frac{1}{N} + \frac{R_v t}{\sqrt{2A}}
\]

– Provides the fluctuation rate in equilibrium

• Route repair / routing overhead
• Coordinate insertion and update
• Buoy hand-over
Future work
Future

• Designed experiments
• Test-bed
• Applications and higher level services
 – Adapted to provided structure
• Topology and mobility awareness (node/network)
 – Reactive (Overhear) and proactive (Beacon)
 – For buoy formation and routing
 – For optimal and adaptive configuration
• Analytical models
 – For mobility
 – For adaptive hierarchical structure
 – For connectivity
 – Traffic: Space-time-mobility-fading
• Security and Malicious behavior
• Sensor networks
• Integration of wired Infra-structure

safari.rice.edu